Pengaruh Gas Inert Nitrogen Yang Dialirkan Secara Kontinyu ke Dalam Reaktor Pirolisis Limbah Biomassa Serbuk Gergaji Batang Kelapa (Cocos nucifera) Terhadap Nilai Kalor Charcoal yang di Hasilkan

Syarwan Hamid, Andi Aladin, Basri Modding, Takdir Syarif, Lastri Wiyani, Muh Arman

Abstract

Abstract

The potential amount of coconut sawdust biomass in Indonesia is very abundant, so far it has not been utilized optimally and tends to be wasted as waste. Coconut sawdust with the main composition of carbon contains heat equivalent to light coal, which is around 4400 kcal/kg. Even though its calorific value is still low, it has the potential to be used as a solid fuel source or an alternative energy source. The calorific value of coconut sawdust can be increased through the pyrolysis process. A study has been carried out on the effect of nitrogen inert gas flowing continuously into the pyrolysis reactor of coconut sawdust biomass waste (Cocos nucifera) on the calorific value of the resulting charcoal. The aim of the research is to determine the effect and optimum flow path of nitrogen inert gas which gives the maximum calorific value of charcoal product. From this study it was concluded that the continuous flow of inert nitrogen gas into the pyrolysis reactor had an effect on increasing the calorific value of the charcoal product by up to 4% compared to not using the inert gas. The optimum nitrogen gas flow rate is 2 L/minute giving a maximum effective calorific value of 7200 kcal/kg

Keywords

Biomass waste, Ironwood,Nitrogen,Charcoal, Pyrolysis

References

“Produksi Tanaman Perkebunan,” 2021. [Online]. Available: https://www.bps.go.id/indicator/54/132/1/produksi-tanaman-perkebunan.html.

P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713–3729, 2009.

F. D. Setiana, J. Jumari, and E. D. Hastuti, “Kelapa Sebagai Komponen Bahan Ramuan Obat di Karaton Ngayogyakarta Hadiningrat dan Pura Pakualaman,” J. Penelit. dan Pengemb. Pelayanan Kesehat., vol. 2, no. 1, pp. 23–28, 2018.

N. Febrianti, F. Filiana, and P. Hasanah, “Potential of Renewable Energy Resources from Biomass Derived by Natural Resources In Balikpapan,” J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung., vol. 17, no. 3, pp. 316–323, 2020.

P. Aladin, P. B. Modding, T. Syarif, L. Wiyani, and H. Amaliyah, PIROLISIS SIMULTAN. Makassar, Sulawesi Selatan: Nasmedia, 2022.

A. Aladin, S. Yani, B. Modding, and L. Wiyani, “Pyrolisis of Corncob Waste to Produce Liquid Smoke,” IOP Conf. Ser. Earth Environ. Sci., vol. 175, no. 1, 2018.

K. Ridhuan and J. Suranto, “Perbandingan Pembakaran Pirolisis Dan Karbonisasi Pada Biomassa Kulit Durian Terhadap Nilai Kalori,” Turbo J. Progr. Stud. Tek. Mesin, vol. 5, no. 1, pp. 50–56, 2017.

M. Arman, A. Makhsud, A. Aladin, and R. A. Majid, “Produksi Bahan Bakar Alternatif Briket dari Hasil Pirolisis Batubara Dan Limbah Biomassa Tongkol Jagung,” J. Chem. Proces Eng., vol. 02, no. 02, pp. 16–21, 2017.

A. Aladin, B. Modding, T. Syarif, and F. C. Dewi, “Effect of nitrogen gas flowing continuously into the pyrolysis reactor for simultaneous production of charcoal and liquid smoke,” J. Phys. Conf. Ser., vol. 1763, no. 1, 2021.

C. Setter, K. L. Sanchez Costa, T. J. Pires de Oliveira, and R. Farinassi Mendes, “The effects of kraft lignin on the physicomechanical quality of briquettes produced with sugarcane bagasse and on the characteristics of the bio-oil obtained via slow pyrolysis,” Fuel Process. Technol., vol. 210, no. August, p. 106561, 2020.

D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, and Z. Ma, “Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin,” Energy Convers. Manag., vol. 169, pp. 228–237, 2018.

M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, “Biofuels production through biomass pyrolysis- A technological review,” Energies, vol. 5, no. 12, pp. 4952–5001, 2012.

E. Ayuningtyas and M. N. Aridito, “Studi Karakteristikproses Pirolisis Dan Arang Dari Briket Serbuk Kayu Dengan Variasi Laju Pemanasan Menggunakan Metode Pirolisis Single Rocket Stove,” J. Rekayasa Lingkung., vol. 19, no. 1, pp. 1–14, 2020.

Y. Zhuo, Z. Xie, and Y. Shen, “Model study of carbonisation of low rank coal briquettes: Effect of briquettes shape,” Powder Technol., vol. 385, pp. 120–130, 2021.

A. Aladin, R. S. Alwi, and T. Syarif, “Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously,” AIP Conf. Proc., vol. 1840, no. May, 2017.

D. K. Ojha, V. S. P. Kumar, and R. Vinu, “Analytical pyrolysis of bagasse and groundnut shell briquettes: Kinetics and pyrolysate composition studies,” Bioresour. Technol. Reports, vol. 15, no. May, p. 100784, 2021.

S. Hasan, A. Aladin, T. Syarif, and M. Arman, “Pengaruh Penambahan Gas Nitrogen Terhadap Kualitas Charcoal Yang Diproduksi Secara Pirolisis Dari Limbah Biomassa Serbuk Gergaji Kayu Ulin (Euxideroxylon Zwageri),” J. Chem. Process Eng., vol. 5, no. 1, pp. 61–68, 2020.

M. Hu et al., “Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue,” J. Environ. Manage., vol. 299, no. August, p. 113601, 2021.

M. Aladin, A dan Dea, Sumber Daya Alam BatuBara, 1st ed. Bandung: CV. LUBUK AGUNG, 2011.

Q. Wang, K. Han, J. Gao, H. Li, and C. Lu, “The pyrolysis of biomass briquettes: Effect of pyrolysis temperature and phosphorus additives on the quality and combustion of bio-char briquettes,” Fuel, vol. 199, pp. 488–496, 2017.

Refbacks

  • There are currently no refbacks.