PEMBUATAN BIOETANOL BERBAHAN BAKU Chlorella pyrenoidosa DENGAN METODE HIDROLISIS ASAM DAN FERMENTASI

Asyeni Miftahul Jannah, Muhammad Yerizam, Muhammad Yori Pratama, Achmad Reza Aditya Amin

Abstract

Mikroalga, seperti C. pyrenoidosa dapat digunakan sebagai bahan baku untuk produksi bioetanol generasi ketiga. Pemanfaatan karbohidrat mikroalga, seperti C. pyrenoidosa untuk produksi bioetanol memiliki tiga tahap utama, yaitu pretreatment bahan baku, hidrolisis, dan fermentasi. Penelitian ini bertujuan untuk mengetahui pengaruh hidrolisis asam dan waktu fermentasi pada proses pembuatan bioetanol berbahan baku C. pyrenoidosa. C. pyrenoidosa dihidrolisis menggunakan asam sulfat dengan konsentrasi yang bervariasi (1, 2, 3, 4 dan 5) % pada suhu 80oC selama 75 menit.  Produksi bioetanol dilakukan dengan fermentasi glukosa menggunakan Saccharomyces cerevisiae dengan variasi waktu 1, 2, 3, 4 dan 5 hari. Hasil penelitian menunjukkan bahwa konsentrasi glukosa yang didapatkan mengalami peningkatan seiring naiknya konsentrasi asam sulfat dengan konsentrasi glukosa tertinggi, yaitu 5,97 gr/L didapatkan setelah hidrolisis menggunakan larutan asam sulfat 5%. Kadar bioetanol tertinggi, yaitu 19,28% diperoleh dari 5 hari fermentasi sampel hidrolisis 5% asam  sulfat.

Keywords

Mikroalga; C. pyrenoidosa; Hidrolisis Asam; Fermentasi; Bioetanol

References

A. Bin Arif, A. . Budiyanto, W. . Diyono, and N. . Richana, “Optimasi Waktu Fermentasi Produksi Bioetanol Dari Dedak Sorgun Manis (Sorghum Bicolor L) Melalui Proses Enzimatis,” J. Penelit. Pascapanen Pertan., vol. 14, no. 2, p. 11, 2017, doi: 10.21082/jpasca.v14n2.2017.67-78.

A. Bušić et al., “Bioethanol Production From Renewable Raw Materials And Its Separation And Purification: A Review,” Food Technol. Biotechnol., vol. 56, no. 3, pp. 289–311, 2018, doi: 10.17113/ftb.56.03.18.5546.

H. S. Tira, M. Mara, Z. Zulfitri, and M. Mirmanto, “Karakteristik fisik dan kimia bioetanol dari jagung (Zea mays L),” Din. Tek. Mesin, vol. 8, no. 2, pp. 77–82, 2018, doi: 10.29303/dtm.v8i2.231.

K. Tolulope Eunice, “Enzymatic and Dilute Acid Hydrolyses of Maize Stalk Substrate in Bio-ethanol Production,” J. Energy, Environ. Chem. Eng., vol. 6, no. 1, p. 24, 2021, doi: 10.11648/j.jeece.20210601.14.

E. Restiawaty et al., “Bioethanol Production from Sugarcane Bagasse Using Neurospora Intermedia in an Airlift Bioreactor,” Int. J. Renew. Energy Dev., vol. 9, no. 2, pp. 247–253, 2020, doi: 10.14710/ijred.9.2.247-253.

M. R. Swain, A. Singh, A. K. Sharma, and D. K. Tuli, “Bioethanol Production From Rice- and Wheat Straw: An Overview,” Bioethanol Prod. from Food Crop., no. January, pp. 213–231, 2019, doi: 10.1016/b978-0-12-813766-6.00011-4.

W. Xing, G. Xu, J. Dong, R. Han, and Y. Ni, “Novel Dihydrogen-bonding Deep Eutectic Solvents: Pretreatment of Rice Straw for Butanol Fermentation Featuring Enzyme Recycling and High Solvent Yield,” Chem. Eng. J., vol. 333, no. June 2017, pp. 712–720, 2018, doi: 10.1016/j.cej.2017.09.176.

M. K. Hassan, R. Chowdhury, S. Ghosh, D. Manna, A. Pappinen, and S. Kuittinen, “Energy and Environmental Impact Assessment of Indian Rice Straw For The Production of Second-Generation Bioethanol,” Sustain. Energy Technol. Assessments, vol. 47, no. August, p. 101546, 2021, doi: 10.1016/j.seta.2021.101546.

K. Gupta and T. S. Chundawat, “Zinc Oxide Nanoparticles Synthesized Using Fusarium Oxysporum to Enhance Bioethanol Production From Rice-Straw,” Biomass and Bioenergy, vol. 143, no. July, p. 105840, 2020, doi: 10.1016/j.biombioe.2020.105840.

B. Tsegaye, C. Balomajumder, and P. Roy, “Optimization of Microwave and NaOH Pretreatments of Wheat Straw for Enhancing Biofuel Yield,” Energy Convers. Manag., vol. 186, pp. 82–92, 2019, doi: 10.1016/j.enconman.2019.02.049.

I. S. Tan, M. K. Lam, H. C. Y. Foo, S. Lim, and K. T. Lee, “Advances of Macroalgae Biomass For The Third Generation Of Bioethanol Production,” Chinese J. Chem. Eng., vol. 28, no. 2, pp. 502–517, 2020, doi: 10.1016/j.cjche.2019.05.012.

M. E. S. Smachetti, L. S. Rizza, C. D. Coronel, M. Do Nascimento, and L. Curatti, Microalgal Biomass as an Alternative Source of Sugars for the Production of Bioethanol, no. August. 2018.

A. Raheem, P. Prinsen, A. K. Vuppaladadiyam, M. Zhao, and R. Luque, “A review on Sustainable Microalgae Based Biofuel and Bioenergy Production: Recent Developments,” J. Clean. Prod., vol. 181, pp. 42–59, 2018, doi: 10.1016/j.jclepro.2018.01.125.

A. Z. Yaser, Engineering for Campus Sustainability. Springer International Publishing, 2020.

W. O. Putri, A. Amri, and S. P. Utami, “Pengaruh pH Pada Proses Hidrolisis Mikro Alga Chlorella Vulgaris Menjadi Glukosa Menggunakan Enzim Selulase,” JOM FTEKNIK, vol. 2, no. 1, pp. 1–5, 2015.

L. M. Chng, K. T. Lee, D. Juinn, and C. Chan, “Synergistic Effect of Pretreatment and Fermentation Process on Carbohydrate-Rich Scenedesmus dimorphus for Bioethanol Production,” Energy Convers. Manag., 2016, doi: 10.1016/j.enconman.2016.10.026.

F. Putri, M. D. S. Silalahi, and A. Rinanti, “Starch Producing in Microalga Biomass as a Raw Material for Bioethanol,” in MATEC Web of Conferences, 2018, vol. 13018, pp. 1–4, doi: https://doi.org/10.1051/matecconf/201819713018.

Refbacks

  • There are currently no refbacks.