Extraction of Vegetable Oil from Candlenut Seeds (Aleurites Moluccana L. Willd.) Using the Microwave Hydrodiffusion and Gravity (MHG) Method

Yeni Variyana, Amelia Sri Rezki, Dewi Ermaya, Mahfud Mahfud

Abstract

The microwave hydriffusion gravity (MHG) method is a relatively new extraction method in order to improve the quality of oil obtained from plant materials or spices. The extraction process is carried out without involving solvents so it is safe for consumption. However, the MHG method has never been applied to the extraction of candlenut (Aleurites moluccana L) seeds. The operating conditions and variables in the research on the extraction process of Aleurites moluccana L are microwave power (300; 450; 600 W), extraction time (15-75 minutes) with 15-minute intervals, material size (1;2;3 cm), mass of raw material 100 gr, and atmospheric pressure. Material treatment consisted of 3 types of material conditions including seed material which had been roasted for 10 minutes over low heat, seed material which had been in the oven for 45 minutes, and seed material which had been without pretreatment. The results of the oil extract were analyzed using GC-MS to identify the components of the constituent compounds. Then, evaluating the mathematical modeling of the extraction process is based on first and second order kinetics. Roasted material showed the highest yield with material size parameter in 1 cm, microwave power of 600 W, and extraction time at 30 minutes, produced 5.55% (%w/w). Furthermore, the pyrazine component (36.814%) is the largest compound from the extraction of Aleurites moluccana. The first-order kinetic model has a regression that is close to the experiment with (R2 = 0.9453). Modeling quality is also supported by a very small total sum of squares (SST) value of 6,44E10-4. Therefore, the MHG method is quite effective in producing Aleurites moluccana oil with better quantity and quality

Keywords

MHG; Aleurites moluccana L; Yield

References

N. L. M. Quintão et al., “Contribution of α , β -Amyrenone to the Anti-Inflammatory and Antihypersensitivity Effects of Aleurites moluccana (L.) Willd.,” Biomed Res. Int., vol. 2014, pp. 1–11, 2014, doi: 10.1155/2014/636839.

S. Sulhatun, M. Mutiawati, and E. Kurniawan, “Pengaruh Temperatur dan Waktu Pemasakan Terhadap Perolehan Minyak Kemiri dengan Menggunakan Cara Basah,” J. Teknol. Kim. Unimal, vol. 9, no. 2, pp. 54–60, 2020, doi: 10.29103/jtku.v9i2.4400.

R. Adawiyah, “Uji Identifikasi Farmakognostik Tumbuhan Kemiri Sunan (Aleurites Trisperma) di Kebun Percobaan Universitas Muhammadiyah Palangkaraya,” Anterior J., vol. 17, no. 1, pp. 60–68, 2017, doi: 10.33084/anterior.v17i1.29.

M. Bilang, M. Mamang, S. Salengke, R. P. Putra, and R. Reta, “Elimination of toxalbumin in candlenut seed (Aleurites moluccana (L.) Willd) using wet heating at high temperature and identification of compounds in the candlenut glycoprotein,” Int. J. Agric. Syst., vol. 6, no. 2, p. 89, 2018, doi: 10.20956/ijas.v6i2.649.

F. Anaba, N. L. P. I. Mayasari, and A. Andriyanto, “Potensi Infusa Kemiri (Aleurites moluccana) sebagai Analgesik dan Stimulator Stamina,” Acta Vet. Indones., vol. 9, no. 1, pp. 14–20, 2021, doi: 10.29244/avi.9.1.14-20.

H. J. McArthur, “Public-Private Partnerships: A Promising Approach for International Agricultural Development or One’s Worst Nightmare?,” in Proceedings of the 18th International Symposium of the International Farming Systems Association: A Global Learning Opportunity, 2005.

Yusran, “Mengembalikan kejayaan hutan kemiri rakyat,” Mengembalikan Kejay. hutan kemiri rakyat, pp. 1–4, 2005, doi: 10.17528/cifor/001809.

R. Wikström, “A hard nut to crack - a gender analysis of a community and a value chain in Indonesia,” Swedish University of Agricultural Sciences, 2019.

M. Gavahian, A. Farahnaky, K. Javidnia, and M. Majzoobi, “Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L.,” Innov. Food Sci. Emerg. Technol., vol. 14, pp. 85–91, Apr. 2012, doi: 10.1016/j.ifset.2012.01.002.

R. Manouchehri, M. J. Saharkhiz, A. Karami, and M. Niakousari, “Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation,” Sustain. Chem. Pharm., vol. 8, pp. 76–81, Jun. 2018, doi: 10.1016/j.scp.2018.03.002.

O. J. Catchpole, J. B. Grey, N. B. Perry, E. J. Burgess, W. A. Redmond, and N. G. Porter, “Extraction of Chili, Black Pepper, and Ginger with Near-Critical CO2, Propane, and Dimethyl Ether: Analysis of the Extracts by Quantitative Nuclear Magnetic Resonance,” J. Agric. Food Chem., vol. 51, no. 17, pp. 4853–4860, 2003, doi: 10.1021/jf0301246.

C. Wu, F. Wang, J. Liu, Y. Zou, and X. Chen, “A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration,” Integr. Med. Res., vol. 4, no. 3, pp. 171–177, 2015, doi: 10.1016/j.imr.2015.06.001.

E. Subroto, E. Widjojokusumo, B. Veriansyah, and R. R. Tjandrawinata, “Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil,” J. Food Sci. Technol., vol. 54, no. 5, pp. 1286–1292, 2017, doi: 10.1007/s13197-017-2542-7.

S. Périno-Issartier, C. Ginies, G. Cravotto, and F. Chemat, “A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation,” J. Chromatogr. A, vol. 1305, pp. 41–47, Aug. 2013, doi: 10.1016/j.chroma.2013.07.024.

Z. Liu et al., “Cinnamomum camphora fruit peel as a source of essential oil extracted using the solvent-free microwave-assisted method compared with conventional hydrodistillation,” LWT, vol. 153, p. 112549, Jan. 2022, doi: 10.1016/j.lwt.2021.112549.

J. Martínez, J. Rosas, J. Pérez, Z. Saavedra, V. Carranza, and P. Alonso, “Green approach to the extraction of major capsaicinoids from habanero pepper using near-infrared, microwave, ultrasound and Soxhlet methods, a comparative study,” Nat. Prod. Res., vol. 33, no. 3, pp. 447–452, Feb. 2019, doi: 10.1080/14786419.2018.1455038.

M. A. Charitopoulou, L. Papadopoulou, and D. S. Achilias, “Microwave-assisted extraction as an effective method for the debromination of brominated flame retarded polymeric blends with a composition that simulates the plastic part of waste electric and electronic equipment (WEEE),” Sustain. Chem. Pharm., vol. 29, p. 100790, Oct. 2022, doi: 10.1016/j.scp.2022.100790.

Y. Variyana and M. Mahfud, “Kinetics Study Using Solvent-Free Microwave Extraction of Essential Oil from Allium sativum L.,” Key Eng. Mater., vol. 840, pp. 186–192, Apr. 2020, doi: 10.4028/www.scientific.net/KEM.840.186.

M. F. Nabila, A. B. Riyanta, and A. A. Barlian, “The Effect Of Variations In Roasting Temperature On Yield And Percentage Of Inhibition Of Dpph Radical Reduction In Candlenut Oil The UV-VIS Spectrophotometric Method,” J. Farm. Sains dan Prakt., vol. 7, no. 2, pp. 120–125, 2021, doi: 10.31603/pharmacy.v7i2.4131.

A. Arlene, I. Suharto, and N. R. Jessica, “Pengaruh Temperatur dan Ukuran Biji Terhadap Perolehan Minyak Kemiri pada Ekstraksi Biji Kemiri dengan Penekanan Mekanis,” Pros. Semin. Nas. Tek. Kim. “Kejuangan,” pp. 1–6, 2010.

M. A. Vian, X. Fernandez, F. Visinoni, and F. Chemat, “Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils,” J. Chromatogr. A, vol. 1190, no. 1–2, pp. 14–17, 2008, doi: 10.1016/j.chroma.2008.02.086.

H. Benmoussa, W. Elfalleh, S. He, M. Romdhane, A. Benhamou, and R. Chawech, “Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: Optimization by response surface methodology,” Ind. Crops Prod., vol. 124, 2018, doi: 10.1016/j.indcrop.2018.08.036.

L. López-Hortas, E. Conde, E. Falqué, and H. Domínguez, “Flowers of Ulex europaeus L.-Comparing two extraction techniques (MHG and distillation),” Comptes Rendus Chim., vol. 19, no. 6, pp. 718–725, 2016, doi: 10.1016/j.crci.2015.11.027.

L. Pérez, E. Conde, and H. Domínguez, “Microwave hydrodiffusion and gravity processing of Sargassum muticum,” Process Biochem., vol. 49, no. 6, pp. 981–988, 2014, doi: 10.1016/j.procbio.2014.02.020.

K. I. B. Moro, A. B. B. Bender, L. P. da Silva, and N. G. Penna, “Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review,” Food Bioprocess Technol., vol. 14, no. 8, pp. 1407–1431, 2021, doi: 10.1007/s11947-021-02665-4.

Y. Variyana and M. Mahfud, “Optimization Using Solvent-Free Microwave Hydro-diffusion Gravity Extraction of Onion Oil from Allium cepa by Response Surface Methodology,” IPTEK J. Technol. Sci., vol. 30, no. 3, p. 116, 2019, doi: 10.12962/j20882033.v30i3.5474.

F. Chemat et al., “A review of sustainable and intensified techniques for extraction of food and natural products,” Green Chem., vol. 22, no. 8, pp. 2325–2353, 2020, doi: 10.1039/c9gc03878g.

Y. Variyana, M. Mahfud, Z. Ma’Sum, B. I. Ardianto, L. P. Syahbana, and D. S. Bhuana, “Optimization of microwave hydro-distillation of lemongrass leaves (Cymbopogon nardus) by response surface methodology,” IOP Conf. Ser. Mater. Sci. Eng., vol. 673, no. 1, 2019, doi: 10.1088/1757-899X/673/1/012006.

S. Périno, J. T. Pierson, K. Ruiz, G. Cravotto, and F. Chemat, “Laboratory to pilot scale: Microwave extraction for polyphenols lettuce,” Food Chem., vol. 204, pp. 108–114, 2016, doi: 10.1016/j.foodchem.2016.02.088.

S. Lagergren, “About the theory of so-called adsorption of soluble substances,” K. Sven. Vetenskapsakademiens Handl., vol. 24, no. 4, pp. 1–39, 1898.

Y.-S. Ho, “Citation review ofLagergren kinetic rate equation on adsorption reactions,” Scientometrics, vol. 59, no. 1, pp. 171–177, 2004, doi: 10.1023/B:SCIE.0000013305.99473.cf.

H. Jahongir, Z. Miansong, I. Amankeldi, Z. Yu, and L. Changheng, “The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil,” J. King Saud Univ. - Eng. Sci., vol. 31, no. 2, pp. 140–143, 2019, doi: 10.1016/j.jksues.2018.04.004.

K. Radha Krishnan, P. Azhagu Saravana Babu, S. Babuskin, M. Sivarajan, and M. Sukumar, “Modeling the Kinetics of Antioxidant Extraction from Origanum vulgare and Brassica nigra,” Chem. Eng. Commun., vol. 202, no. 12, pp. 1577–1585, Dec. 2015, doi: 10.1080/00986445.2014.957757.

F. Chen, Y. Zu, and L. Yang, “A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction,” Sep. Purif. Technol., vol. 154, pp. 271–280, 2015, doi: 10.1016/j.seppur.2015.09.066.

K. B. Singh Chouhan, R. Tandey, K. K. Sen, R. Mehta, and V. Mandal, “Microwave hydrodiffusion and gravity model with a blend of high and low power microwave firing for improved yield of phenolics and flavonoids from oyster mushroom,” Sustain. Chem. Pharm., vol. 17, no. May, p. 100311, 2020, doi: 10.1016/j.scp.2020.100311.

O. R. Alara and N. H. Abdurahman, “Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification,” Ind. Crops Prod., vol. 137, no. May, pp. 528–535, 2019, doi: 10.1016/j.indcrop.2019.05.053.

T. Phat, N. Quyen, T. Truc, and V. T. Lam, “Materials Today : Proceedings Assessing the kinetic model on extraction of essential oil and chemical composition from lemon peels ( Citrus aurantifolia ) by hydro-distillation process,” Mater. Today Proc., no. xxxx, pp. 1–6, 2021, doi: 10.1016/j.matpr.2021.05.069.

P. T. Dao, N. Y. T. Tran, Q. N. Tran, G. L. Bach, and T. V. Lam, “Kinetics of pilot-scale essential oil extraction from pomelo (Citrus maxima) peels: Comparison between linear and nonlinear models,” Alexandria Eng. J., 2021, doi: 10.1016/j.aej.2021.07.002.

H.-Y. Kim, “Statistical notes for clinical researchers: simple linear regression 2 – evaluation of regression line,” Restor. Dent. Endod., vol. 43, no. 3, pp. 1–5, 2018, doi: 10.5395/rde.2018.43.e34

Refbacks

  • There are currently no refbacks.